Document Type
Article
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Abstract
The revised Bathing Water Directive (2006/7/EC) requires EU member states to minimise the risk to public health from faecal pollution at bathing waters through improved monitoring and management approaches. While increasingly sophisticated measurement methods (such as microbial source tracking) assist in the management of bathing water resources, the use of deterministic predictive models for this purpose, while having the potential to provide decision making support, remains less common.
This study explores an integrated, deterministic catchment-coastal hydro-environmental model as a decision-making tool for beach management which, based on advance predictions of bathing water quality, can inform beach managers on appropriate management actions (to prohibit bathing or advise the public not to bathe) in the event of a poor water quality forecast. The model provides a ‘moving window’ five-day forecast of Escherichia coli levels at a bathing water compliance point off the Irish coast and the accuracy of bathing water management decisions were investigated for model predictions under two scenarios over the period from the 11th August to the 5th September, 2012. Decisions for Scenario 1 were based on model predictions where rainfall forecasts from a meteorological source (www.yr.no) were used to drive the rainfall–runoff processes in the catchment component of the model, and for Scenario 2, were based on predictions that were improved by incorporating real-time rainfall data from a sensor network within the catchment into the forecasted meteorological input data. The accuracy of the model in the decision-making process was assessed using the contingency table and its metrics. The predictive model gave reasonable outputs to support appropriate decision making for public health protection. Scenario 1 provided real-time predictions that, on 77% of instances during the study period where both predicted and E. coli concentrations were available, would correctly inform a beach manager to either take action to mitigate for poor bathing water quality or take no action. However, Scenario 1 also provided data to support a decision to take action (when none was necessary – a type I error) in 4% of instances and to take no action (when action was required – a type II error) in 19% of the instances analysed. Type II errors are critical in terms of public health protection given that for this error, bathers can be exposed to risks from poor bathing water quality. Scenario 2, on the other hand, provided predictions that would support correct management actions for 79% of the instances but would result in type I and type II errors for 4% and 17% of the instances respectively. Comparison of Scenarios 1 and 2 for this study indicate that Scenario 2 gave a marginally better overall performance in terms of supporting correct management decisions, as it provided data that could result in a lower occurrence of the more critical type II errors.
Given that the 28 member states of the European Union are required to engage with the public health provisions of the revised Bathing Water Directive, issues of compliance, pertaining particularly to the management of bathing water resources, remain topical. Decision supports for managing bathing waters in the context of the Directive are likely to become the focus of much attention and although, the current study has been validated in bathing waters off the east coast of Ireland, the approach of using a deterministic and integrated catchment-coastal model for such purposes is easily transferable to other bathing water jurisdictions.
DOI
https://doi.org/10.1016/j.jenvman.2015.10.046
Recommended Citation
Bedri, Z. et al. (2015) Evaluating a Microbial Water Quality Prediction Model for Beach Management Under the Revised EU Bathing Water Directive, Journal of Environmental Management, Vol. 167, pp 49-58. https://doi.org/10.1016/j.jenvman.2015.10.046
Publication Details
Journal of Environmental Management, Vol. 167, pp 49-58