Document Type

Article

Rights

Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence

Disciplines

3. MEDICAL AND HEALTH SCIENCES

Abstract

High-sensitivity and simple, low-cost readout are desirable features for sensors independent of the application area. Micro-cantilever sensors use the deflection induced by the analyte presence to achieve high-sensitivity but possess complex electronic readouts. Current holographic sensors probe the analyte presence by measuring changes in their optical properties, have a simpler low-cost readout, but their sensitivity can be further improved. Here, the two working principles were combined to obtain a new hybrid sensor with enhanced sensitivity. The diffractive element, a holographically patterned thin photopolymer layer, was placed on a polymer (polydimethylsiloxane) layer forming a bi-layer macro-cantilever. The different responses of the layers to analyte presence lead to cantilever deflection. The sensitivity and detection limits were evaluated by measuring the variation in cantilever deflection and diffraction efficiency with relative humidity. It was observed that the sensitivity is tunable by controlling the spatial frequency of the photopolymer gratings and the cantilever thickness. The sensor deflection was also visible to the naked eye, making it a simple, user-friendly device. The hybrid sensor diffraction efficiency response to the target analyte had an increased sensitivity (10-fold when compared with the cantilever or holographic modes operating independently), requiring a minimum upturn in the readout complexity.

DOI

https://doi.org/10.3390/s21051673


Included in

Optometry Commons

Share

COinS