Document Type

Article

Rights

Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence

Disciplines

1.3 PHYSICAL SCIENCES, 3. MEDICAL AND HEALTH SCIENCES

Publication Details

Physica Medica

Abstract

Purpose: Renal arterial stenosis can lead to disrupted renal function due to reduced blood flow to the kidneys and is largely thought to be caused by atherosclerosis. Current diagnostic strategies for renal arterial stenosis rely on detecting large degree stenoses (>50%). This study aimed to test the viability of using Doppler ultrasound to assess velocity profiles to detect the presence of low degree (<50%) stenoses.

Methods: A series of anatomically realistic renal artery flow phantoms were constructed exhibiting a range of low degree stenoses (symmetric and asymmetric). The behaviour of fluid flow in the phantoms was examined using Doppler ultrasound and analysed to calculate the clinical biomarker, wall shear stress.

Results: A number of fluid behaviours were observed in relation to stenosis degree: asymmetric stenoses tended to result in a skewing of peak velocities away from the centre of the vessel towards the outer wall, the magnitude of increase in velocity was observed to correlate with stenosis degree, and the wall shear stress curves observed large peaks in the presence of even the lowest degree stenosis (20%).

Conclusions: Doppler ultrasound could potentially be utilised to diagnose low degree stenoses in a clinical setting. Doppler ultrasound in conjunction with wall shear stress analysis in particular has significant potential in the diagnosis of renal artery stenosis.

DOI

https://doi.org/10.1016/j.ejmp.2019.08.016


Share

COinS