Document Type
Conference Paper
Rights
This item is available under a Creative Commons License for non-commercial use only
Disciplines
Pure mathematics, Applied mathematics
Abstract
A class of equations describing the geodesic flow for a right-invariant metric on the group of diffeomorphisms of Rn is reviewed from the viewpoint of their Lie-Poisson structures. A subclass of these equations is analogous to the Euler equations in hydrodynamics (for n = 3), preserving the volume element of the domain of fluid flow. An example in n = 1 dimension is the Camassa-Holm equation, which is a geodesic flow equation on the group of diffeomorphisms, preserving the H1 metric.
DOI
https://doi.org/10.21427/nm8q-hn16
Recommended Citation
Ivanov, R. (2009). Poisson Structures of Equations associated with groups of diffeomorphisms. World Scientific, pg 99 – 108. doi:10.21427/nm8q-hn16
Funder
INTAS grant No 05-1000008-7883
Included in
Geometry and Topology Commons, Non-linear Dynamics Commons, Partial Differential Equations Commons