#### Document Type

Article

#### Rights

This item is available under a Creative Commons License for non-commercial use only

#### Disciplines

Applied mathematics

#### Abstract

The squared eigenfunctions of the spectral problem associated with the CamassaHolm (CH) equation represent a complete basis of functions, which helps to describe the inverse scattering transform for the CH hierarchy as a generalized Fourier transform (GFT). All the fundamental properties of the CH equation, such as the integrals of motion, the description of the equations of the whole hierarchy, and their Hamiltonian structures, can be naturally expressed using the completeness relation and the recursion operator, whose eigenfunctions are the squared solutions. Using the GFT, we explicitly describe some members of the CH hierarchy, including integrable deformations for the CH equation. We also show that solutions of some (1 + 2) - dimensional members of the CH hierarchy can be constructed using results for the inverse scattering transform for the CH equation. We give an example of the peakon solution of one such equation.

#### Recommended Citation

R. Ivanov, Equations of the Camassa-Holm hiererchy, Theoretical and Mathematical Physics, 160 (2009), 953--960.

#### Included in

Dynamic Systems Commons, Mathematics Commons, Non-linear Dynamics Commons, Partial Differential Equations Commons

## Publication Details

Theoretical and Mathematical Physics