Document Type
Article
Rights
This item is available under a Creative Commons License for non-commercial use only
Disciplines
Applied mathematics, Fluids and plasma physics
Abstract
In this contribution we describe the role of several two-component integrable systems in the classical problem of shallow water waves. The starting point in our derivation is the Euler equation for an incompressible fluid, the equation of mass conservation, the simplest bottom and surface conditions and the constant vorticity condition. The approximate model equations are generated by introduction of suitable scalings and by truncating asymptotic expansions of the quantities to appropriate order. The so obtained equations can be related to three different integrable systems: a two component generalization of the Camassa-Holm equation, the Zakharov-Ito system and the Kaup-Boussinesq system. The significance of the results is the inclusion of vorticity, an important feature of water waves that has been given increasing attention during the last decade. The presented investigation shows how – up to a certain order – the model equations relate to the shear flow upon which the wave resides. In particular, it shows exactly how the constant vorticity affects the equations.
DOI
https://doi.org/10.1016/j.wavemoti.2009.06.012
Recommended Citation
Ivanov, R. (2009). Two component integrable systems modelling shallow water waves: the constant vorticity case. Wave Motion, vol.46 pg. 389-396. doi:10.1016/j.wavemoti.2009.06.012
Funder
INTAS grant No 05-1000008-7883
Included in
Mathematics Commons, Non-linear Dynamics Commons, Partial Differential Equations Commons
Publication Details
Wave Motion (2009), vol.46 (2009), 389-396