Author ORCID Identifier
https://orcid.org/ 0000-0001-5567-8634
Document Type
Article
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
Statistics, Neuroscience
Abstract
Freezing of gait in people with Parkinson's disease (PwP) is associated with executive dysfunction and motor preparation deficits. We have recently shown that electrophysiological markers of motor preparation, rather than decision-making, differentiate PwP with freezing of gait (FOG +) and without (FOG -) while sitting. To examine the effect of locomotion on these results, we measured behavioural and electrophysiological responses in PwP with and without FOG during a target response time task while sitting (single-task) and stepping-in-place (dual-task). Behavioural and electroencephalographic data were acquired from 18 PwP (eight FOG +) and seven young controls performing the task while sitting and stepping-in-place. FOG + had slower response times while stepping compared with sitting. However, response times were significantly faster while stepping compared with sitting for controls. Electrophysiological responses showed no difference in decision-making potentials (centroparietal positivity) between groups or conditions but there were differences in neurophysiological markers of response inhibition (N2) and motor preparation (lateralized readiness potential, LRP) in FOG + while performing a dual-task. This suggests that the addition of a second complex motor task (stepping-in-place) impacts automatic allocation of resources in FOG +, resulting in delayed response times. The impact of locomotion on the generation of the N2 and LRP potentials, particularly in freezers, indirectly implies that these functions compete with locomotion for resources. In the setting of multiple complex tasks or cognitive impairment, severe motor dysfunction may result, leading to freezing of gait.
DOI
https://doi.org/10.1007/s00221-020-05968-8
Recommended Citation
Fearon C, Butler JS, Waechter SM, Killane I, Kelly SP, Reilly RB, Lynch T. Neurophysiological correlates of dual tasking in people with Parkinson's disease and freezing of gait. Exp Brain Res. 2021 Jan;239(1):175-187. doi: 10.1007/s00221-020-05968-8. Epub 2020 Nov 2. PMID: 33135132.
Publication Details
Experimental Brain Research