Document Type
Article
Rights
This item is available under a Creative Commons License for non-commercial use only
Disciplines
Applied mathematics
Abstract
The analytic form of a new class of factorized Runge-Kutta-Chebyshev (FRKC) stability polynomials of arbitrary order N is presented. Roots of FRKC stability polynomials of degree L = MN are used to construct explicit schemes comprising L forward Euler stages with internal stability ensured through a sequencing algorithm which limits the internal amplification factors to ~ L2. The associated stability domain scales as M2 along the real axis. Marginally stable real-valued points on the interior of the stability domain are removed via a prescribed damping procedure. By construction, FRKC schemes meet all linear order conditions; for nonlinear problems at orders above 2, complex splitting or Butcher group composition methods are required. Linear order conditions of the FRKC stability polynomials are verified at orders 2, 4, and 6 in numerical experiments. Comparative studies with existing methods show the second-order unsplit FRKC2 scheme and higher order (4 and 6) split FRKC schemes are efficient for large moderately stiff problems.
DOI
http://doi.org 10. 1016/ j. jcp. 2015. 07. 050
Recommended Citation
O'Sullivan,S.(2015) A class of high-order Runge-Kutta-Chebyshev stability polynomials, Journal of Computational Physics doi: 10. 1016/ j. jcp. 2015. 07. 050
Included in
Numerical Analysis and Computation Commons, Ordinary Differential Equations and Applied Dynamics Commons
Publication Details
Journal of Computational Physics
Submitted February 12, 2015
Accepted July 22, 2015
© 2015, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/ licenses/by-nc-nd/4.0/
doi: 10. 1016/ j. jcp. 2015. 07. 050