Document Type

Dissertation

Disciplines

1.2 COMPUTER AND INFORMATION SCIENCE, Computer Sciences

Publication Details

A dissertation submitted in partial fulfilment of the requirements of Technological University Dublin for the degree of M.Sc. in Computer Science (Data Analytics) April 03, 2022.

Abstract

Hate speech can be defined as forms of expression that incite hatred or encourage violence towards a person or group based on race, religion, gender, or sexual orientation. Hate speech has gravitated towards social media as its primary platform, and its propagation represents profound risks to both the mental well-being and physical safety of targeted groups. Countermeasures to moderate hate speech face challenges due to the volumes of data generated in social media, leading companies, and the research community to evaluate methods to automate its detection. The emergence of BERT and other pre-trained transformer-based models for transfer learning in the Natural Language Processing (NLP) domain has enabled state-of-theart performance in hate speech detection. Yet, there are concerns around the performance at scale and environmental costs of increasingly large models.

Creative Commons License

Creative Commons Attribution-Share Alike 4.0 International License
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.


Share

COinS