Document Type

Dissertation

Rights

This item is available under a Creative Commons License for non-commercial use only

Disciplines

Computer Sciences

Publication Details

Dissertation submitted in partial fulfilment of the requirements of Technological University Dublin for the degree of M.Sc. in Computing (Stream), March 2018.

Abstract

Epilepsy is one of the most common neurological disorders, and afflicts approximately 70 million people globally. 30-40% of patients have refractory epilepsy, where seizures cannot be controlled by anti-epileptic medication, and surgery is neither appropriate, nor available. The unpredictable nature of epileptic seizures is the primary cause of mortality among patients, and leads to significant psychosocial disability. If seizures could be predicted in advance, automatic seizure warning systems could transform the lives of millions of people. This study presents a performance comparison of artificial neural network and sup port vector machine classifiers, using EEG spectral features to predict the onset of epileptic seizures. In addition, the study also examines the influence of EEG window size, feature selection, and data sampling on classification performance. A total of 216 generalised models were trained and tested on a public seizure database, which contained over 1300 hours of EEG data from 7 subjects. The results showed that ANN outperform SVM, when using spectral features (p = 0.035). The beta and gamma frequency bands were shown to be the best predictors of seizure onset. No significant differences in performance were determined for the dif ferent window sizes, or for the feature selection methods. The data sampling method significantly influenced the performance (p < 0.001), and highlighted the importance of treating class imbalance in EEG datasets.

DOI

https://doi.org/10.21427/D7NJ78


Share

COinS