Document Type
Conference Paper
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
Computer Sciences
Abstract
One of the most important tasks in road maintenance is the detection of potholes. This process is usually done through manual visual inspection, where certified engineers assess recorded images of pavements acquired using cameras or professional road assessment vehicles. Machine learning techniques are now being applied to this problem, with models trained to automatically identify road conditions. However, approaching this real-world problem with machine learning techniques presents the classic problem of how to produce generalisable models. Images and videos may be captured in different illumination conditions, with different camera types, camera angles, and resolutions. In this paper, we present our approach to building a generalized learning model for pothole detection. We apply four datasets that contain a range of image and environment conditions. Using the Faster RCNN object detection model, we demonstrate the extent to which pothole detection models can generalise across various conditions. Our work is a contribution to bringing automated road maintenance techniques from the research lab into the real-world
DOI
https://doi.org/10.5220/0010463701280136
Recommended Citation
Hassan S., O’Sullivan D. and Mckeever S. (2021). Pothole Detection under Diverse Conditions using Object Detection Models. In Proceedings of the International Conference on Image Processing and Vision Engineering - Volume 1: IMPROVE, ISBN 978-989-758-511-1, pages 128-136. DOI: 10.5220/0010463701280136
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.
Publication Details
In Proceedings of the International Conference on Image Processing and Vision Engineering - Volume 1: IMPROVE