Document Type
Conference Paper
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
1.2 COMPUTER AND INFORMATION SCIENCE, Linguistics
Abstract
Creating word embeddings that reflect semantic relationships encoded in lexical knowledge resources is an open challenge. One approach is to use a random walk over a knowledge graph to generate a pseudo-corpus and use this corpus to train embeddings. However, the effect of the shape of the knowledge graph on the generated pseudo-corpora, and on the resulting word embeddings, has not been studied. To explore this, we use English WordNet, constrained to the taxonomic (tree-like) portion of the graph, as a case study. We investigate the properties of the generated pseudo-corpora, and their impact on the resulting embeddings. We find that the distributions in the psuedo-corpora exhibit properties found in natural corpora, such as Zipf’s and Heaps’ law, and also ob- serve that the proportion of rare words in a pseudo-corpus affects the performance of its embeddings on word similarity.
DOI
https://doi.org/10.21427/dkct-1z58
Recommended Citation
Klubička, F., Maldonado, A., and Kelleher, J. (2019). Synthetic, yet natural: Properties of WordNet random walk corpora and the impact of rare words on embedding performance. InProceedings of GWC2019: 10th Global WordNet Conference, Wroclaw, Poland, 23-27 July. doi:10.21427/dkct-1z58
Funder
ADAPT Centre for Digital Content Technology
Included in
Artificial Intelligence and Robotics Commons, Computational Linguistics Commons, Numerical Analysis and Scientific Computing Commons, Software Engineering Commons
Publication Details
In Proceedings of GWC2019: 10th Global WordNet Conference, Wroclaw, Poland.