Document Type
Conference Paper
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Abstract
When a user uploads audio files to a music stream- ing service, these files are subsequently re-encoded to lower bitrates to target different devices, e.g. low bitrate for mobile. To save time and bandwidth uploading files, some users encode their original files using a lossy codec. The metadata for these files cannot always be trusted as users might have encoded their files more than once. Determining the lowest bitrate of the files allows the streaming service to skip the process of encoding the files to bitrates higher than that of the uploaded files, saving on processing and storage space. This paper presents a model that uses quality predictions from ViSQOLAudio, a full reference objective audio quality metric, as features in combination with a multi-class support vector machine classifier. An experiment on twice-encoded files found that low bitrate codecs could be classified using audio quality features. The experiment also provides insights into the implications of multiple transcodes from a quality perspective.
DOI
https://doi.org/10.1109/QoMEX.2016.7498956
Recommended Citation
C. Sloan, N. Harte, D. Kelly, A. C. Kokaram and A. Hines, (2016) Bitrate classification of twice-encoded audio using objective quality features," Eighth International Conference on Quality of Multimedia Experience (QoMEX), Lisbon, 2016, pp. 1-6. doi: 10.1109/QoMEX.2016.7498956
Funder
Google, Inc. and Science Foundation Ireland (SFI)
Included in
Computer Engineering Commons, Electrical and Electronics Commons, Signal Processing Commons
Publication Details
2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), Lisbon, 2016, pp. 1-6.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7498956&isnumber=7498914