Document Type
Conference Paper
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
1.2 COMPUTER AND INFORMATION SCIENCE, Computer Sciences
Abstract
Accurate classification of astronomical objects currently relies on spectroscopic data. Acquiring this data is time-consuming and expensive compared to photometric data. Hence, improving the accuracy of photometric classification could lead to far better coverage and faster classification pipelines. This paper investigates the benefit of using unsupervised feature-extraction from multi-wavelength image data for photometric classification of stars, galaxies and QSOs. An unsupervised Deep Belief Network is used, giving the model a higher level of interpretability thanks to its generative nature and layer-wise training. A Random Forest classifier is used to measure the contribution of the novel features compared to a set of more traditional baseline features.
DOI
https://doi.org/10.21427/D7TX67
Recommended Citation
Lindh, A. (2016). Investigating the Impact of Unsupervised Feature-Extraction from Multi-Wavelength Image Data for Photometric Classification of Stars, Galaxies and QSOs. Proceedings of the 24th Irish Conference on Artificial Intelligence and Cognitive Science, Dublin, Ireland, p. 320-331. doi:10.21427/D7TX67
Included in
Astrophysics and Astronomy Commons, Computer Engineering Commons, Computer Sciences Commons
Publication Details
Proceedings of the 24th Irish Conference on Artificial Intelligence and Cognitive Science (pp. 320-331), Dublin, Ireland.