Document Type
Conference Paper
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
Computer Sciences, Information Science
Abstract
While recent Machine Learning (ML) based techniques for activity recognition show great promise, there remain a number of questions with respect to the relative merits of these techniques. To provide a better understanding of the relative strengths of contemporary Activity Recognition methods, in this paper we present a comparative analysis of Hidden Markov Model, Bayesian, and Support Vector Machine based human activity recognition models. The study builds on both pre-existing and newly annotated data which includes interleaved activities. Results demonstrate that while Support Vector Machine based techniques perform well for all data sets considered, simple representations of sensor histories regularly outperform more complex count based models.
DOI
https://doi.org/10.21427/tgp7-v241
Recommended Citation
Ross, R. & Kelleher, J. (2013). Accuracy and Timeliness in ML Based Activity Recognition. Proceedings of the AAAI Workshop on Plan, Activity, and Intent Recognition (PAIR). Association for the Advancement of Artificial Intelligence, 2013. doi:10.21427/tgp7-v241
Funder
Irish Research Council for Science Education and Technology (IRCSET)
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.
Publication Details
In Proceedings of the AAAI Workshop on Plan, Activity, and Intent Recognition (PAIR). Association for the Advancement of Artificial Intelligence, 2013