Document Type
Conference Paper
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
Computer Sciences
Abstract
Rapid growth in the number of measures available to describe customer-organization relationships has presented a serious challenge for Business Intelligence (BI) interface developers as they attempt to provide business users with key customer information without requiring users to painstakingly sift through many interface windows and layers. In this paper we introduce a prototype Intelligent User Interface that we have deployed to partially address this issue. The interface builds on machine learning techniques to construct a ranking model of Key Performance Indicators (KPIs) that are used to select and present the most important customer metrics that can be made available to business users in time critical environments. We provide an overview of the prototype application, the underlying models used for KPI selection, and a comparative evaluation of machine learning and closed form solutions to the ranking and selection problems. Results show that the machine learning based method outperformed the closed form solution with a 66.5% accuracy rate on multi-label attribution in comparison to 54.1% for the closed form solution.
DOI
https://doi.org/10.1145/2557500.2557536
Recommended Citation
Keck, I. & Ross, R. Exploring Customer Specific KPI Selection Strategies for an Adaptive Time Critical User Interface. 2014 International Conference on Intelligent User Interfaces, Israel. ACM Digital Library. doi:10.1145/2557500.2557536
Funder
Enterprise Ireland and the IDA
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.
Included in
Artificial Intelligence and Robotics Commons, Databases and Information Systems Commons, Graphics and Human Computer Interfaces Commons
Publication Details
2014 International Conference on Intelligent User Interfaces, Israel. ACM Digital Library.