Document Type

Conference Paper

Rights

Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence

Disciplines

Computer Sciences

Publication Details

Presented at the International Conference on Case-based Reasoning 2012

Abstract

This paper considers the task of sentiment classification of subjective text across many domains, in particular on scenarios where no in-domain data is available. Motivated by the more general applicability of such methods, we propose an extensible approach to sentiment classification that leverages sentiment lexicons and out-of-domain data to build a case-based system where solutions to past cases are reused to predict the sentiment of new documents from an unknown domain. In our approach the case representation uses a set of features based on document statistics, while the case solution stores sentiment lexicons employed on past predictions allowing for later retrieval and reuse on similar documents. The case-based nature of our approach also allows for future improvements since new lexicons and classification methods can be added to the case base as they become available. On a cross domain experiment our method has shown robust results when compared to a baseline single-lexicon classifier where the lexicon has to be pre-selected for the domain in question.

DOI

https://doi.org/10.1007/978-3-642-32986-9_22


Share

COinS