Document Type
Article
Disciplines
1.2 COMPUTER AND INFORMATION SCIENCE, Computer Sciences
Abstract
In this paper, we examine deflation-based algebraic multigrid methods for solving large systems of linear equations. Aggregation of the unknown terms is applied for coarsening, while deflation techniques are proposed for improving the rate of convergence. More specifically, the V-cycle strategy is adopted, in which, at each iteration, the solution is computed by initially decomposing it utilizing two complementary subspaces. The approximate solution is formed by combining the solution obtained using multigrids and deflation. In order to improve performance and convergence behavior, the proposed scheme was coupled with the Modified Generic Factored Approximate Sparse Inverse preconditioner. Furthermore, a parallel version of the multigrid scheme is proposed for multicore parallel systems, improving the performance of the techniques. Finally, characteristic model problems are solved to demonstrate the applicability of the proposed schemes, while numerical results are given.
DOI
https://doi.org/10.3390/math11030640
Recommended Citation
Natsiou, Anastasia; Gravvanis, George A.; Filelis-Papadopoulos, Christos K.; and Giannoutakis, Konstantinos M., "An Aggregation-Based Algebraic Multigrid Method with Deflation Techniques and Modified Generic Factored Approximate Sparse Inverses" (2023). Articles. 198.
https://arrow.tudublin.ie/scschcomart/198
Funder
This research received no external funding
Creative Commons License
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.
Publication Details
https://www.mdpi.com/2227-7390/11/3/640
https://doi.org/10.3390/math11030640