Document Type




Publication Details

Rigo GV, Cardoso FG, Pereira MM, Devereux M, McCann M, Santos ALS, Tasca T. Peptidases Are Potential Targets of Copper(II)-1,10-Phenanthroline-5,6-dione Complex, a Promising and Potent New Drug against Trichomonas vaginalis. Pathogens. 2023 May 22;12(5):745.

doi: 10.3390/pathogens12050745.


Trichomonas vaginalis is responsible for 156 million new cases per year worldwide. When present asymptomatically, the parasite can lead to serious complications, such as development of cervical and prostate cancer. As infection increases the acquisition and transmission of HIV, the control of trichomoniasis represents an important niche for the discovery and development of new antiparasitic molecules. This urogenital parasite synthesizes several molecules that allow the establishment and pathogenesis of infection. Among them, peptidases occupy key roles as virulence factors, and the inhibition of these enzymes has become an important mechanism for modulating pathogenesis. Based on these premises, our group recently reported the potent anti-T. vaginalis action of the metal-based complex [Cu(phendione)3](ClO4)2.4H2O (Cu-phendione). In the present study, we evaluated the influence of Cu-phendione on the modulation of proteolytic activities produced by T. vaginalis by biochemical and molecular approaches. Cu-phendione showed strong inhibitory potential against T. vaginalis peptidases, especially cysteine- and metallo-type peptidases. The latter revealed a more prominent effect at both the post-transcriptional and post-translational levels. Molecular Docking analysis confirmed the interaction of Cu-phendione, with high binding energy (-9.7 and -10.7 kcal·mol-1, respectively) at the active site of both TvMP50 and TvGP63 metallopeptidases. In addition, Cu-phendione significantly reduced trophozoite-mediated cytolysis in human vaginal (HMVII) and monkey kidney (VERO) epithelial cell lineages. These results highlight the antiparasitic potential of Cu-phendione by interaction with important T. vaginalis virulence factors.



21/2551-0000128-3/Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul 309764/2021-1/National Council for Scientific and Technological Development

Creative Commons License

Creative Commons Attribution-Share Alike 4.0 International License
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.