Document Type
Theses, Ph.D
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
1.2 COMPUTER AND INFORMATION SCIENCE, Computer Sciences, Information Science
Abstract
Limited work exists for the comparison across distinct knowledge-based approaches in Artificial Intelligence (AI) for non-monotonic reasoning, and in particular for the examination of their inferential and explanatory capacity. Non-monotonicity, or defeasibility, allows the retraction of a conclusion in the light of new information. It is a similar pattern to human reasoning, which draws conclusions in the absence of information, but allows them to be corrected once new pieces of evidence arise. Thus, this thesis focuses on a comparison of three approaches in AI for implementation of non-monotonic reasoning models of inference, namely: expert systems, fuzzy reasoning and defeasible argumentation. Three applications from the fields of decision-making in healthcare and knowledge representation and reasoning were selected from real-world contexts for evaluation: human mental workload modelling, computational trust modelling, and mortality occurrence modelling with biomarkers. The link between these applications comes from their presumptively non-monotonic nature. They present incomplete, ambiguous and retractable pieces of evidence. Hence, reasoning applied to them is likely suitable for being modelled by non-monotonic reasoning systems. An experiment was performed by exploiting six deductive knowledge bases produced with the aid of domain experts. These were coded into models built upon the selected reasoning approaches and were subsequently elicited with real-world data. The numerical inferences produced by these models were analysed according to common metrics of evaluation for each field of application. For the examination of explanatory capacity, properties such as understandability, extensibility, and post-hoc interpretability were meticulously described and qualitatively compared. Findings suggest that the variance of the inferences produced by expert systems and fuzzy reasoning models was higher, highlighting poor stability. In contrast, the variance of argument-based models was lower, showing a superior stability of its inferences across different system configurations. In addition, when compared in a context with large amounts of conflicting information, defeasible argumentation exhibited a stronger potential for conflict resolution, while presenting robust inferences. An in-depth discussion of the explanatory capacity showed how defeasible argumentation can lead to the construction of non-monotonic models with appealing properties of explainability, compared to those built with expert systems and fuzzy reasoning. The originality of this research lies in the quantification of the impact of defeasible argumentation. It illustrates the construction of an extensive number of non-monotonic reasoning models through a modular design. In addition, it exemplifies how these models can be exploited for performing non-monotonic reasoning and producing quantitative inferences in real-world applications. It contributes to the field of non-monotonic reasoning by situating defeasible argumentation among similar approaches through a novel empirical comparison.
DOI
https://doi.org/10.21427/g02a-wg20
Recommended Citation
Rizzo, L. (2020) Evaluating the Impact of Defeasible Argumentation as a Modelling Technique for Reasoning under Uncertainty. Doctoral Thesis, Technological University Dublin. doi:10.21427/g02a-wg20
Publication Details
Successfully submitted for the award of Doctor of Philosophy (Ph.D) to the Technological University Dublin, 2020.