Author ORCID Identifier
Document Type
Conference Paper
Disciplines
1.1 MATHEMATICS
Abstract
Khalil El Hindi has developed a fine-tuning algorithm to
improve the classification accuracy of the Naive Bayes. His algorithm optimizes the conditional probability tables of the Naive Bayes after the
training phase. The values of the probabilities of a variable are modified if it causes misclassification of a training instance. The algorithm out-performs in many cases the Naive Bayes. We analyze the performance
of the algorithm, discussed its issues, and compare it to a modified algorithm. The new algorithm simplifies the formula used in the fine-tuning algorithm and uses a more efficient scoring metric, the Brier score, to
fine-tune the probabilities. The new algorithm shows an improvement in terms of classification accuracy on benchmark data sets compared to the Naive Bayes and fine tuned Naive Bayes.
DOI
https://doi.org/10.21427/7KQM-CQ71
Recommended Citation
Mietkiewicz, J., & Madsen, A. (2022). Improvement of the Fine tuning algorithm. University of Antwerp. DOI: 10.21427/7KQM-CQ71
Funder
Collaborative intelligence for safety Critical systems (CISC)
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.
Publication Details
BNAIC 2022 conference
Proceedings online
https://bnaic2022.uantwerpen.be/accepted-submissions/