Author ORCID Identifier
0000-0002-6329-5841
Document Type
Article
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
1.4 CHEMICAL SCIENCES, 1.6 BIOLOGICAL SCIENCES, Biochemistry and molecular biology
Abstract
Members of the voltage-gated K+ channel subfamily (Kv1), involved in regulating transmission between neurons or to muscles, are associated with human diseases and, thus, putative targets for neurotherapeutics. This applies especially to those containing Kv1.1 α subunits which become prevalent in murine demyelinated axons and appear abnormally at inter-nodes, underlying the perturbed propagation of nerve signals. To overcome this dysfunction, akin to the consequential debilitation in multiple sclerosis (MS), small inhibitors were sought that are selective for the culpable hyper-polarising K+ currents. Herein, we report a new semi-podand – compound 3 – that was designed based on the modelling of its interactions with the extracellular pore region in a deduced Kv1.1 channel structure. After synthesis, purification, and structural characterisation, compound 3 was found to potently (IC50 = 8 µM) and selectively block Kv1.1 and 1.6 channels. The tested compound showed no apparent effect on native Nav and Cav channels expressed in F-11 cells. Compound 3 also extensively and selectively inhibited MS-related Kv1.1 homomer but not the brain native Kv1.1- or 1.6-containing channels. These collective findings highlight the therapeutic potential of compound 3 to block currents mediated by Kv1.1 channels enriched in demyelinated central neurons.
DOI
https://doi.org/10.1016/j.bioorg.2020.103918
Recommended Citation
A. Al-Sabi, et al. (2020). Development of a selective inhibitor for Kv1.1 channels prevalent in demyelinated nerves, Bioorganic Chemistry, 100 (2020) 103918. DOI:10.1016/j.bioorg.2020.103918
Publication Details
Bioorganic Chemistry 100 (2020) 103918