Document Type
Article
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Abstract
Seventy-two isolates representing 18 serotypes recovered from various food samples collected in Colombia were tested for antimicrobial susceptibilities. The collection was further characterized for extended-spectrum cephalosporin, aminoglycoside, and tetracycline resistance markers. Multidrug resistant (MDR) isolates were further investigated for class 1 integrons and were evaluated for the presence of conjugative plasmids along with a determination of the incompatibility group by polymerase chain reaction (PCR). Antibiogram analysis showed that the incidence rate of ceftiofur resistance was moderately high (15%). A similar level of resistance to neomycin and oxytetracycline (11% and 10%, respectively) was also observed. There was a high prevalence of gene cassettes as part of one or more class 1 integrons (61%), many of which contained determinants that contributed to the resistance profile. Class 1 integrons identified in MDR Salmonella enterica serotypes Typhimurium and Anatum isolates were characterized. Sequencing identified several incomplete open reading frames (ORFs) as part of a gene cassette (bla-( imp-13 ), dfr7, blr1088, and aac8) along with a complete gene cassette (bla-(oxa2)) in each case. A mosaic of gene cassettes was identical in the two Salmonella serotypes. These integrons were located to a conjugative replicon. Plasmid profiling and incompatibility typing identified three plasmids belonging to Inc groups A/C, P, and W. Our study highlights the role of integrons, contributing to a MDR phenotype that is capable of dissemination to other bacteria.
DOI
https://doi.org/10.1089/mdr.2006.12.269
Recommended Citation
Walsh, C. et al (2006) Antimicrobial resistance in nontyphoidal Salmonella from food sources in Colombia: evidence for an unusual plasmid-localized class 1 integron in serotypes Typhimurium and Anatum. Microbial drug resistance, 2006 Winter;12(4):269-77. DOI: 10.1089/mdr.2006.12.269
Publication Details
Microbial drug resistance, 2006 Winter;12(4):269-77.
https://www.ncbi.nlm.nih.gov/pubmed/17227213