Document Type

Article

Rights

Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence

Disciplines

Agricultural biotechnology and food biotechnology

Publication Details

Journal of Applied Microbiology

DOI: 10.1111/jam.12426

Abstract

Aims: This study investigated a range of atmospheric cold plasma (ACP) process parameters for bacterial inactivation with further investigation of selected parameters on cell membrane integrity and DNA damage. The effects of high voltage levels, mode of exposure, gas mixture and treatment time against Escherichia coli and Listeria monocytogenes were examined.

Methods and Results: 108 CFU ml-1 E. coli ATCC 25922, E. coli NCTC 12900 and L. monocytogenes NCTC11994 were ACP treated in 10ml phosphate buffered saline (PBS). Working gas mixtures used were; Air (gas mix 1), 90% N2+10% O2 (gas mix 2) and 65% O2+30% CO2+5% N2 (gas mix 3). Greater reduction of viability was observed for all strains using higher voltage of 70 kVRMS, and with working gas mixtures with higher oxygen content in combination with direct exposure. Indirect ACP exposure for 30 s inactivated below detection level both E. coli strains. L. monocytogenes inactivation within 30 s was irrespective of the mode of exposure. Leakage was assessed using A260 absorbance and DNA damage was monitored using PCR and Gel electrophoresis. Membrane integrity was compromised after 5 s, with noticeable DNA damage also dependent on the target cell after 30 s.

Conclusions: Plasma treatment was effective for inactivation of challenge microorganisms, with a greater sensitivity of L. monocytogenes noted. Different damage patterns were observed for the different bacterial strains, attributed to the membrane structure and potential resistance mechanisms.

DOI

https://doi.org/10.1111/jam.12426

Funder

European Community


Included in

Life Sciences Commons

Share

COinS