Document Type
Article
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
3. MEDICAL AND HEALTH SCIENCES
Abstract
The potential of Raman micro spectroscopy as an in vitro, non-invasive tool for clinical applications has been demonstrated in recent years, specifically for cancer research. To further illustrate its potential as a high content and label free technique, it is important to show its capability to elucidate drug mechanisms of action and cellular resistances. In this study, cytotoxicity assays were employed to establish the toxicity profiles for 24 hr exposure of lung cancer cell lines, A549 and Calu-1, to the commercially available drug, doxorubicin (DOX). Raman spectroscopy, coupled with Confocal Laser Scanning Microscopy and Flow Cytometry, was used to track the DOX mechanism of action, at a subcellular level, and to study the mechanisms of cellular resistance to DOX. Biomarkers related to the drug mechanism of action and cellular resistance to apoptosis, namely reactive oxygen species (ROS) and bcl-2 protein expression, respectively, were also measured and correlated to Raman spectral profiles. Calu-1 cells are shown to exhibit spectroscopic signatures of both direct DNA damage due to intercalation in the nucleus and indirect damage due to oxidative stress in the cytoplasm, whereas the A549 cell line only exhibits signatures of the former mechanism of action.
Recommended Citation
Farhane, Z., Bonnier, F. & Maher, M.A. (2017). Differentiating responses of lung cancer cell lines to Doxorubicin exposure: in vitro Raman micro spectroscopy, oxidative stress and bcl-2 protein expression. Journal of Biophotonics, vol. 10, no. 1, pp. 151-165. doi:10.1002/jbio.201600019
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.
Publication Details
Journal of Biophotonics January 2017.