Document Type
Article
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Abstract
The mechanism of cellular uptake by endocytosis and subsequent oxidative stress has been identified as the paradigm for the toxic response of cationically surface charged nanoparticles. In an attempt to circumvent the process, the effect of increased cellular membrane permeability on the uptake mechanisms of poly (amidoamine) dendrimers generation 4 (G4) and 6 (G6) in vitro was investigated. Immortalised, non-cancerous human keratinocyte (HaCaT) cells were treated with DL-Buthionine-(S,R)-sulfoximine (BSO). Active uptake of the particles was monitored using fluorescence microscopy to identify and quantify endosomal activity and resultant oxidative stress, manifest as increased levels of reactive oxygen species, monitored using the carboxy-H2DCFDA dye. Dose dependent cytotoxicity for G4 and G6 exposure was registered using the cytotoxicity assays Alamar Blue and MTT, from 6 to 72 hours. Reduced uptake by endocytosis is observed for both dendrimer species. A dramatic change, compared to untreated cells, is observed in the cytotoxic and oxidative stress response of the BSO treated cells. The significantly increased mitochondrial activity, dose dependent anti-oxidant behaviour and reduced degree of endocytosis for both dendrimer generations, in BSO treated cells, indicates enhanced permeability of the cell membrane, resulting in the passive, diffusive uptake of dendrimers, replacing endocytosis as the primary uptake mechanism. The complex MTT response reflects the importance of glutathione in maintaining redox balance within the mitochondria. The study highlights the importance of regulation of this redox balance for cell metabolism, but also points to the potential of controlling the nanoparticle uptake mechanisms, and resultant cytotoxicity, with implications for nanomedicine.
Recommended Citation
Maher, M. and Byrne, H., (2016) Modification of the in vitro uptake mechanism and anti-oxidant levels in HaCaT cells and resultant changes to toxicity and oxidative stress of G4 and G6 Poly (amido amine) dendrimer nanoparticles. Analytical and Bioanalytical Chemistry, 408, 5295-5307 (2016)
Funder
DIT
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.
Publication Details
Analytical and Bioanalytical Chemistry, 408, 5295-5307 (2016)