Document Type
Article
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Abstract
A phenomenological rate equation model is constructed to numerically simulate nanoparticle uptake and subsequent cellular response. Polyamidoamine dendrimers (generations 4-6) are modelled and the temporal evolution of the intracellular cascade of; increased levels of reactive oxygen species, intracellular antioxidant species, caspase activation, mitochondrial membrane potential decay, tumour necrosis factor and interleukin generation is simulated, based on experimental observations.
The dose and generation dependence of several of these response factors are seen to well represent experimental observations at a range of time points. The model indicates that variations between responses of different cell-lines, including murine macrophages, human keratinocytes and colon cells, can be simulated and understood in terms of different intracellular antioxidant levels, and, within a given cell-line, varying responses of different cytotoxicity assays can be understood in terms of their sensitivities to different intracellular cascade events.
The model serves as a tool to interpolate and visualise the range of dose and temporal dependences and elucidate the mechanisms underlying the in vitro cytotoxic response to nanoparticle exposure and describes the interaction in terms of independent nanoparticle properties and cellular parameters, based on reaction rates. Such an approach could be a valid alternative to that of effective concentrations for classification of nanotoxicity and may lay the foundation for future quantitative structure activity relationships and predictive nanotoxicity models.
DOI
https://doi.org/10.1016/j.tiv.2014.07.014
Recommended Citation
Maher, M. A. et al. (2014) Numerical simulations of in vitro nanoparticle toxicity – the case of Poly(amido amine) dendrimers, Toxicology In Vitro, 28, pp. 1449-1460. doi:10.1016/j.tiv.2014.07.014
Funder
DIT
Included in
Biochemistry Commons, Biophysics Commons, Molecular Biology Commons, Other Biochemistry, Biophysics, and Structural Biology Commons, Other Pharmacology, Toxicology and Environmental Health Commons, Pharmacology Commons, Structural Biology Commons, Toxicology Commons
Publication Details
Marcus A. Maher, Pratap C. Naha, Sourav Prassana Mukerjee, Hugh J. Byrne Toxicology In Vitro, 28, 1449-1460 (2014)