Document Type
Conference Paper
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
Electrical and electronic engineering, Automation and control systems
Abstract
This study compared the synchronisation of a medical grade Electroencephalography (EEG) system, the g.Tec, and a consumer grade EEG system, the Emotiv. Data was collected from both systems using the lab streaming layer (LSL). Both EEG systems recorded an electric signal from the surface of a customised gel phantom. The electric signal was generated using a solar cell which was illuminated by a monitor presenting a sequence of black and white images. Test results show that the g.Tec had a mean delay of 51.22 ms from the stimulus onset and the Emotiv had a mean delay of 162.69 ms from the stimulus onset. The result should be taken into account with future ERP studies which will use either the EEG system and the lab streaming layer. The design of this experiment provides a smart way to evaluate the temporal accuracy of other EEG systems.
DOI
https://doi.org/10.1109/ISSC.2019.8904947
Recommended Citation
Y. Wang, C. Markham and C. Deegan, "Assessing the time synchronisation of EEG systems," 2019 30th Irish Signals and Systems Conference (ISSC), 2019, pp. 1-6, doi: 10.1109/ISSC.2019.8904947.
Funder
Technological University Dublin
Publication Details
30th Irish Signals and Systems Conference (ISSC)