Document Type

Article

Rights

Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence

Disciplines

2. ENGINEERING AND TECHNOLOGY

Publication Details

Biosystems Engineering, vol.115, Issue 2, June 2013,p.136-143.

http://dx.doi.org/10.1016/j.biosystemseng.2013.03.007.

Abstract

This study compared the combustion characteristics and the combustion behaviour of oats, barley, triticale and wheat to that of wood pellets. Sustained grain combustion in domestic boilers was feasible but problematic, the main impediment being clinker formation with ash agglomeration. Clinker formation was lowest for oats which burned easily with fewer operational problems. Triticale displayed reasonably good combustion characteristics and also ignited easily. In contrast, barley and wheat proved difficult to ignite while barley combustion was prone to self-extinguish. Thermal and combustion efficiency and heat output were considerably higher at a grain moisture content of 15% compared to a moisture content of 20%. The efficiency of oat combustion was similar to that of wood pellets at a moisture content of 15%. Carbon monoxide (CO) emission from cereal grains increased with increasing moisture content, but was still below limit values. Oxides of nitrogen (NOx) emissions from cereal combustion were high and would require reduction by limiting the quantity of nitrogen applied to the crop and/or the use of air staging. Oats proved superior to the other grains as a combustion feedstock with similar efficiencies to those of wood pellets but low moisture content is a prerequisite for efficient grain combustion.


Share

COinS