Document Type
Article
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
2. ENGINEERING AND TECHNOLOGY
Abstract
Invariance to local rotation, to differentiate from the global rotation of images and objects, is required in various texture analysis problems. It has led to several breakthrough methods such as local binary patterns, maximum response and steerable filterbanks. In particular, textures in medical images often exhibit local structures at arbitrary orientations. Locally Rotation Invariant (LRI) Convolutional Neural Networks (CNN) were recently proposed using 3D steerable filters to combine LRI with Directional Sensitivity (DS). The steerability avoids the expensive cost of convolutions with rotated kernels and comes with a parametric representation that results in a drastic reduction of the number of trainable parameters. Yet, the potential bottleneck (memory and computation) of this approach lies in the necessity to recombine responses for a set of predefined discretized orientations. In this paper, we propose to calculate invariants from the responses to the set of spherical harmonics projected onto 3D kernels in the form of a lightweight Solid Spherical Energy (SSE) CNN. It offers a compromise between the high kernel specificity of the LRI-CNN and a low memory/operations requirement. The computational gain is evaluated on 3D synthetic and pulmonary nodule classification experiments. The performance of the proposed approach is compared with steerable LRI-CNNs and standard 3D CNNs, showing competitive results with the state of the art.
DOI
http://doi.org10.21427/ccjb-2504
Recommended Citation
Andrearczyk, V., Oreiller, V., Fageot, J., Montet, X. & Depeursinge, A. (2019). Solid spherical energy (SSE) CNNS for efficient 3D medical image analysis. IMVIP 2019: Irish Machine Vision & Image Processing, Technological University Dublin, Dublin, Ireland, August 28-30. doi: 10.21427/ccjb-2504
Publication Details
IMVIP 2019: Irish Machine Vision & Image Processing, Technological University Dublin, Dublin, Ireland, August 28-30.