Document Type

Conference Paper

Rights

Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence

Disciplines

Computer Sciences, Health care sciences and services, Hospital administration

Publication Details

2018 Winter Simulation Conference (WSC)

Abstract

Hospital planning teams are always concerned with optimizing staffing and scheduling decisions in order to improve hospital performance, patient experience, and staff satisfaction. A multi-method approach including data analytics, modeling and simulation, machine learning, and optimization is proposed to provide a framework for smart and applicable solutions for staffing and shift scheduling. Factors regarding patients, staff, and hospitals are considered in the decision. This framework is piloted using the Emergency Department(ED) of a leading university hospital in Dublin. The optimized base staffing patterns and shift schedules actively contributed to solving ED overcrowding problem and reduced the average waiting time for patients by 43% compared to the current waiting time of discharged patients. The reduction was achieved by optimizing the staffing level and then determining the shift schedule that minimized the understaffing and overstaffing of the personnel need to meet patient demand.

DOI

https://doi.org/10.1109/WSC.2018.8632247


Share

COinS