Document Type
Conference Paper
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
Computer Sciences, Biology, Cardiac and Cardiovascular systems
Abstract
Coronary stent implantation can improve blood flow in an artery that has been narrowed by the build up of arterial plaque. However, the haemodynamic effect of stent placement is unclear and may influence arterial restenosis (re-blockage). The degree of tissue prolapse between stent struts may be an important factor in predicting the restenosis rate of a stent due to the haemodynamic influence of the protruding tissue. In this paper a mathematical model has been developed to numerically predict the tissue prolapse for an artery implanted with a coronary stent. The prolapse model has been applied to the Gianturco-Roubin II (GR-II) coil stent (Cook, USA) and the Palmaz-Schatz (PS) slotted tube stent (Johnson & Johnson, USA). Finally, computational fluid dynamics (CFD) is used to predict the blood flow through both stented arteries with the tissue protrusion as predicted by the prolapse model.
Recommended Citation
Murphy, J., Boyle, F.: Development of a Three Dimensional Prolapse Model to Simulate Physiological Haemodynamics in a Stented Coronary Artery. Sixth IASTED International Conference on Biomedical Engineering. 2008.
Funder
Department of Mechanical Engineering, Technological University Dublin (DIT)and the Irish Research Council for Science Engineering and Technology (IRCSET)
Publication Details
Proceedings of the Sixth IASTED International Conference on Biomedical Engineering, 2008.