Document Type

Article

Rights

Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence

Disciplines

2.3 MECHANICAL ENGINEERING

Abstract

Synthetic jet actuators (SJA) are emerging in various engineering applications, from flow separation and noise control in aviation to thermal management of electronics. A SJA oscillates a flexible membrane inside a cavity connected to a nozzle producing vortices. A complex interaction between the cavity pressure field and the driving electronics can make it difficult to predict performance. A reduced-order model (ROM) has been developed to predict the performance of SJAs. This paper applies this model to a canonical configuration with applications in flow control and electronics cooling, consisting of a single SJA with a rectangular orifice, emanating perpendicular to the surface. The practical implementation of the ROM to estimate the relationship between cavity pressure and jet velocity, jet velocity and diaphragm deflection and applied driving voltage is explained in detail. Unsteady Reynolds-averaged Navier Stokes computational fluid dynamics (CFD) simulations are used to assess the reliability of the reduced-order model. The CFD model itself has been validated with experimental measurements. The effect of orifice aspect ratio on the ROM parameters has been discussed. Findings indicate that the ROM is capable of predicting the SJA performance for a wide range of operating conditions (in terms of frequency and amplitude). © 2018 by the authors. Licensee MDPI, Basel, Switzerland.

DOI

https://doi.org/10.3390/act7040067

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Included in

Engineering Commons

Share

COinS