Document Type

Article

Disciplines

2.2 ELECTRICAL, ELECTRONIC, INFORMATION ENGINEERING, Electrical and electronic engineering

Publication Details

https://www.sciencedirect.com/science/article/pii/S2352484722026567

https://doi.org/10.1016/j.egyr.2022.12.056

Abstract

The voltage source converter (VSC) based HVDC (high voltage direct current system) offers the possibility to integrate other renewable energy sources (RES) into the electrical grid, and allows power flow reversal capability. These appealing features of VSC technology led to the further development of multi-terminal direct current (MTDC) systems. MTDC grids provide the possibility of interconnection between conventional power systems and other large-scale offshore sources like wind and solar systems. The modular multilevel converter (MMC) has become a popular technology in the development of the VSC-MTDC system due to its salient features such as modularity and scalability. Although, the employment of MMC converter in the MTDC system improves the overall system performance. However, there are some technical challenges related to its operation, control, modeling and protection that need to be addressed. This paper mainly provides a comprehensive review and investigation of the control and protection of the MMC-based MTDC system. In addition, the issues and challenges associated with the development of the MMC-MTDC system have been discussed in this paper. It majorly covers the control schemes that provide the AC system support and state-of-the-art relaying algorithm/ dc fault detection and location algorithms. Different types of dc fault detection and location algorithms presented in the literature have been reviewed, such as local measurement-based, communication-based, traveling wave-based and artificial intelligence-based. Characteristics of the protection techniques are compared and analyzed in terms of various scenarios such as implementation in CBs, system configuration, selectivity, and robustness. Finally, future challenges and issues regarding the development of the MTDC system have been discussed in detail.

DOI

https://doi.org/10.1016/j.egyr.2022.12.056

Funder

This research received no external funding

Creative Commons License

Creative Commons Attribution-Share Alike 4.0 International License
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.


Share

COinS