Document Type
Article
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
2. ENGINEERING AND TECHNOLOGY, 2.2 ELECTRICAL, ELECTRONIC, INFORMATION ENGINEERING
Abstract
Object-based features like spectral, topographic, and textural are supportive to determine debris-covered glacier classes. The original feature space includes relevant and irrelevant features. The inclusion of all these features increases the complexity and renders the classifier’s performance. Therefore, feature space optimization is requisite for the classification process. Previous studies have shown a rigorous exercise in manually selecting the best combination of features to define the target class and proven to be a time consuming task. The present study proposed a hybrid feature selection technique to automate the selection of the best suitable features. This study aimed to reduce the classifier’s complexity and enhance the performance of the classification model. Relief-F and Pearson Correlation filter-based feature selection methods ranked features according to the relevance and filtered out irrelevant or less important features based on the defined condition. Later, the hybrid model selected the common features to get an optimal feature set. The proposed hybrid model was tested on Landsat 8 images of debris-covered glaciers in Central Karakoram Range and validated with present glacier inventories. The results showed that the classification accuracy of the proposed hybrid feature selection model with a Decision Tree classifier is 99.82%, which is better than the classification results obtained using other mapping techniques. In addition, the hybrid feature selection technique has sped up the process of classification by reducing the number of features by 77% without compromising the classification accuracy.
DOI
https://doi.org/10.1016/j.asej.2022.101809
Recommended Citation
Sharda, S., Srivastava, M. & Singh Gusain, H. (2022). A hybrid machine learning technique for feature optimization in object-based classification of debris-covered glaciers. Ain Shams Engineering Journal, vol. 13, pg. 101809. doi:10.1016/j.asej.2022.101809
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.