Document Type
Article
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
Electrical and electronic engineering
Abstract
The effect of dipole-dipole interactions of free electrons on the spectral characteristics of simple metals and their nanoparticles is analyzed using Drude theory and the model of the Lorentz local field. It is established that accounting for the dispersion of a local field under conditions of one-dimensional (1D) confinement based on the optical constants of the bulk metal allows the determination of its spectral micro-characteristics in the frequency region of the longitudinal collective motions of the free electrons. This corresponds to the spectra of the dielectric losses of bulk plasma oscillations. A similar procedure for three-dimensional (3D) confinement produces the spectrum of dielectric losses at the frequency of localized plasma oscillations. Using a number of simple metal examples, viz., Li, Na, and K, and also Al, Be, and Mg, it is shown that the frequencies of volume and localized plasma oscillations obtained from a model of dispersion of the local field in the long-wave limit are in good agreement with the actual frequencies of the plasma oscillations of the corresponding metals and the absorption maxima of their nanoparticles with a radius of 2–20 nm. It is shown that the frequencies of the main mode of longitudinal plasma oscillations and the absorption frequency of localized plasmons are well described using the dynamic theory of crystal lattice vibrations.
DOI
https://doi.org/10.1007/s11468-019-00939-4
Recommended Citation
Shaganov, I.I., Berwick, K. & Perova, T.S. Influence of the Local Field and Dipole-Dipole Interactions on the Spectral Characteristics of Simple Metals and Their Nanoparticles. Plasmonics 14, 1443–1451 (2019). DOI: 10.1007/s11468-019-00939-4
Publication Details
Plasmonics