Document Type

Article

Rights

Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence

Disciplines

2. ENGINEERING AND TECHNOLOGY

Publication Details

Transactions on Machine Learning & Artifical Intellengence

6th June 2020

Abstract

This paper considers some recent advances in the field of Cryptography using Artificial Intelligence (AI). It specifically considers the applications of Machine Learning (ML) and Evolutionary Computing (EC) to analyze and encrypt data. A short overview is given on Artificial Neural Networks (ANNs) and the principles of Deep Learning using Deep ANNs. In this context, the paper considers: (i) the implementation of EC and ANNs for generating unique and unclonable ciphers; (ii) ML strategies for detecting the genuine randomness (or otherwise) of finite binary strings for applications in Cryptanalysis. The aim of the paper is to provide an overview on how AI can be applied for encrypting data and undertaking cryptanalysis of such data and other data types in order to assess the cryptographic strength of an encryption algorithm, e.g. to detect patterns of intercepted data streams that are signatures of encrypted data. This includes some of the authors’ prior contributions to the field which is referenced throughout. Applications are presented which include the authentication of high-value documents such as bank notes with a smartphone. This involves using the antenna of a smartphone to read (in the near field) a flexible radio frequency tag that couples to an integrated circuit with a non-programmable coprocessor. The coprocessor retains ultra-strong encrypted information generated using EC that can be decrypted on-line, thereby validating the authenticity of the document through the Internet of Things with a smartphone. The application of optical authentication methods using a smartphone and optical ciphers is also briefly explored.

DOI

https://doi.org/10.14738/tmlai.83.8219


Share

COinS