Document Type

Conference Paper

Disciplines

2.2 ELECTRICAL, ELECTRONIC, INFORMATION ENGINEERING, Robotics and automatic control

Publication Details

https://ieeexplore.ieee.org/document/9937047/keywords#keywords

M. Zawish, N. Ashraf, R. I. Ansari and S. Davy, "Energy-Aware AI-Driven Framework for Edge-Computing-Based IoT Applications," in IEEE Internet of Things Journal, vol. 10, no. 6, pp. 5013-5023, 15 March15, 2023,

doi: 10.1109/JIOT.2022.3219202

Abstract

The significant growth in the number of Internet of Things (IoT) devices has given impetus to the idea of edge computing for several applications. In addition, energy harvestable or wireless-powered wearable devices are envisioned to empower the edge intelligence in IoT applications. However, the intermittent energy supply and network connectivity of such devices in scenarios including remote areas and hard-to-reach regions such as in-body applications can limit the performance of edge computing-based IoT applications. Hence, deploying state-of-the-art convolutional neural networks (CNNs) on such energy-constrained devices is not feasible due to their computational cost. Existing model compression methods, such as network pruning and quantization can reduce complexity, but these methods only work for fixed computational or energy requirements, which is not the case for edge devices with an intermittent energy source. In this work, we propose a pruning scheme based on deep reinforcement learning (DRL), which can compress the CNN model adaptively according to the energy dictated by the energy management policy and accuracy requirements for IoT applications. The proposed energy policy uses predictions of energy to be harvested and dictates the amount of energy that can be used by the edge device for deep learning inference. We compare the performance of our proposed approach with existing state-of-the-art CNNs and data sets using different filter-ranking criteria and pruning ratios. We observe that by using DRL-driven pruning, the convolutional layers that consume relatively higher energy are pruned more as compared to their counterparts. Thereby, our approach outperforms existing approaches by reducing energy consumption and maintaining accuracy.

DOI

https://doi.org/10.1109/JIOT.2022.3219202

Creative Commons License

Creative Commons Attribution-Share Alike 4.0 International License
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.


Share

COinS