Mid-infrared Self-similar Compression of Picosecond Pulse in an Inversely Tapered Silicon Ridge Waveguide

Gerald Farrell, Dublin Institute of Technology
Jinhui Yuan, Beijing University of Posts and Telecommunications
Jian Chen, Beijing University of Posts and Telecommunications

Document Type Article

Optics Express, Vol. 25, No. 26, 25 Dec 2017.

Abstract

On chip high quality and high degree pulse compression is desirable in the realization of integrated ultrashort pulse sources, which are important for nonlinear photonics and spectroscopy. In this paper, we design a simple inversely tapered silicon ridge waveguide with exponentially decreasing dispersion profile along the propagation direction, and numerically investigate self-similar pulse compression of the fundamental soliton within the mid-infrared spectral region. When higher-order dispersion (HOD), higher-order nonlinearity (HON), losses (α), and variation of the Kerr nonlinear coefficient γ(z) are considered in the extended nonlinear Schrödinger equation, a 1 ps input pulse at the wavelength of 2490 nm is successfully compressed to 57.29 fs in only 5.1-cm of propagation, along with a compression factor Fc of 17.46. We demonstrated that the impacts of HOD and HON are minor on the pulse compression process, compared with that of α and variation of γ(z). Our research results provide a promising solution to realize integrated mid-infrared ultrashort pulse sources