Document Type
Article
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
2. ENGINEERING AND TECHNOLOGY
Abstract
On chip high quality and high degree pulse compression is desirable in the realization of integrated ultrashort pulse sources, which are important for nonlinear photonics and spectroscopy. In this paper, we design a simple inversely tapered silicon ridge waveguide with exponentially decreasing dispersion profile along the propagation direction, and numerically investigate self-similar pulse compression of the fundamental soliton within the mid-infrared spectral region. When higher-order dispersion (HOD), higher-order nonlinearity (HON), losses (α), and variation of the Kerr nonlinear coefficient γ(z) are considered in the extended nonlinear Schrödinger equation, a 1 ps input pulse at the wavelength of 2490 nm is successfully compressed to 57.29 fs in only 5.1-cm of propagation, along with a compression factor Fc of 17.46. We demonstrated that the impacts of HOD and HON are minor on the pulse compression process, compared with that of α and variation of γ(z). Our research results provide a promising solution to realize integrated mid-infrared ultrashort pulse sources.
DOI
https://doi.org/10.1364/OE.25.033439
Recommended Citation
Farrell, G., Chen, J. & Yuan, J. (2017). Mid-Infrared Self-Similar Compression of Picosecond Pulse in an Inversely Tapered Silicon Ridge Waveguide. Optics Express, vol. 25, no. 26, pp. 33439-33450. doi.org/10.1364/OE.25.033439
Publication Details
Optics Express Vol. 25, Issue 26, pp. 33439-33450 (2017).