Document Type
Theses, Ph.D
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
Electrical and electronic engineering
Abstract
As geographical observational data capture, storage and sharing technologies such as in situ remote monitoring systems and spatial data infrastructures evolve, the vision of a Digital Earth, first articulated by Al Gore in 1998 is getting ever closer. However, there are still many challenges and open research questions. For example, data quality, provenance and heterogeneity remain an issue due to the complexity of geo-spatial data and information representation.
Observational data are often inadequately semantically enriched by geo-observational information systems or spatial data infrastructures and so they often do not fully capture the true meaning of the associated datasets. Furthermore, data models underpinning these information systems are typically too rigid in their data representation to allow for the ever-changing and evolving nature of geo-spatial domain concepts. This impoverished approach to observational data representation reduces the ability of multi-disciplinary practitioners to share information in an interoperable and computable way.
The health domain experiences similar challenges with representing complex and evolving domain information concepts. Within any complex domain (such as Earth system science or health) two categories or levels of domain concepts exist. Those concepts that remain stable over a long period of time, and those concepts that are prone to change, as the domain knowledge evolves, and new discoveries are made. Health informaticians have developed a sophisticated two-level modelling systems design approach for electronic health documentation over many years, and with the use of archetypes, have shown how data, information, and knowledge interoperability among heterogenous systems can be achieved.
This research investigates whether two-level modelling can be translated from the health domain to the geo-spatial domain and applied to observing scenarios to achieve semantic interoperability within and between spatial data infrastructures, beyond what is possible with current state-of-the-art approaches.
A detailed review of state-of-the-art SDIs, geo-spatial standards and the two-level modelling methodology was performed. A cross-domain translation methodology was developed, and a proof-of-concept geo-spatial two-level modelling framework was defined and implemented. The Open Geospatial Consortium’s (OGC) Observations & Measurements (O&M) standard was re-profiled to aid investigation of the two-level information modelling approach. An evaluation of the method was undertaken using II specific use-case scenarios. Information modelling was performed using the two-level modelling method to show how existing historical ocean observing datasets can be expressed semantically and harmonized using two-level modelling. Also, the flexibility of the approach was investigated by applying the method to an air quality monitoring scenario using a technologically constrained monitoring sensor system.
This work has demonstrated that two-level modelling can be translated to the geospatial domain and then further developed to be used within a constrained technological sensor system; using traditional wireless sensor networks, semantic web technologies and Internet of Things based technologies. Domain specific evaluation results show that twolevel modelling presents a viable approach to achieve semantic interoperability between constrained geo-observational sensor systems and spatial data infrastructures for ocean observing and city based air quality observing scenarios. This has been demonstrated through the re-purposing of selected, existing geospatial data models and standards. However, it was found that re-using existing standards requires careful ontological analysis per domain concept and so caution is recommended in assuming the wider applicability of the approach.
While the benefits of adopting a two-level information modelling approach to geospatial information modelling are potentially great, it was found that translation to a new domain is complex. The complexity of the approach was found to be a barrier to adoption, especially in commercial based projects where standards implementation is low on implementation road maps and the perceived benefits of standards adherence are low. Arising from this work, a novel set of base software components, methods and fundamental geo-archetypes have been developed. However, during this work it was not possible to form the required rich community of supporters to fully validate geoarchetypes. Therefore, the findings of this work are not exhaustive, and the archetype models produced are only indicative. The findings of this work can be used as the basis to encourage further investigation and uptake of two-level modelling within the Earth system science and geo-spatial domain. Ultimately, the outcomes of this work are to recommend further development and evaluation of the approach, building on the positive results thus far, and the base software artefacts developed to support the approach.
DOI
https://doi.org/10.21427/92j5-q204
Recommended Citation
Stacey, P. (2021). A Two-Level Information Modelling Translation Methodology and Framework to Achieve Semantic Interoperability in Constrained GeoObservational Sensor Systems. Doctoral Thesis, TU Dublin, 2021, DOI: 10.21427/92J5-Q204
Publication Details
Thesis submitted to Technological University Dublin, for the degree of Doctor of Philosophy.