Document Type
Article
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
1.2 COMPUTER AND INFORMATION SCIENCE, Infectious diseases
Abstract
Agent-based models can be used to better understand the impacts of lifting restrictions or implementing interventions during a pandemic. However, agent-based models are computationally expensive, and running a model of a large population can result in a simulation taking too long to run for the model to be a useful analysis tool during a public health crisis. To reduce computing time and power while running a detailed agent-based model for the spread of COVID-19 in the Republic of Ireland, we introduce a scaling factor that equates 1 agent to 100 people in the population. We present the results from model validation and show that the scaling factor increases the variability in the model output, but the average model results are similar in scaled and un-scaled models of the same population, and the scaled model is able to accurately simulate the number of cases per day in Ireland during the autumn of 2020. We then test the usability of the model by using the model to explore the likely impacts of increasing community mixing when schools reopen after summer holidays.
DOI
https://doi.org/10.3390/a15080270
Recommended Citation
Hunter E, Kelleher JD. Validating and Testing an Agent-Based Model for the Spread of COVID-19 in Ireland. Algorithms. 2022; 15(8):270, DOI: 10.3390/a15080270
Funder
ADAPT Centre for Digital Content Technology
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication Details
Algorithms Special Issue - Artificial Intelligence in Modeling and Simulation
https://www.mdpi.com/1999-4893/15/8/270