Document Type

Article

Disciplines

1.4 CHEMICAL SCIENCES

Publication Details

https://www.sciencedirect.com/science/article/pii/S0928098723001598

Tao Zhang, Vilmar Bandero, Claire Corcoran, Ismael Obaidi, Manuel Ruether, John O'Brien, Lorraine O'Driscoll, Neil Frankish, Helen Sheridan, Design, synthesis and biological evaluation of a novel bioactive indane scaffold 2-(diphenylmethylene)c-2,3-dihydro-1H-inden-1-one with potential anticancer activity, European Journal of Pharmaceutical Sciences, Volume 188, 2023.

https://doi.org/10.1016/j.ejps.2023.106529

Abstract

Over the past decades, designing of privileged structures has emerged as a useful approach to the discovery and optimisation of novel biologically active molecules, and many have been successfully exploited across and within different target families. Examples include indole, quinolone, isoquinoline, benzofuran and chromone, etc. In the current study, we focus on synthesising a novel hybrid scaffold constituting naturally occurring benzophenone (14) and indanone (22) ring systems, leading to a general structure of 2-(diphenylmethylene)-2,3-dihydro-1H-inden-1-one (23). It was hypothesised this new hybrid system would provide enhanced anti-cancer activity owing to the presence of the common features associated with the tubulin binding small molecule indanocine (10) and the estrogen receptor (ER) antagonist tamoxifen (24). Key hybrid molecules were successfully synthesised and characterised, and the in vitro cytotoxicity assays were performed against cancer cell lines: MCF7 (breast) and SKBR3 (breast), DU145 (prostate) and A549 (lung). The methyl-, chloro- and methoxy-, para-substituted benzophenone hybrids displayed the greatest degree of cytotoxicity and the E-configuration derivatives 45, 47 and 49 being significantly most potent. We further verified that the second benzyl moiety of this novel hybrid scaffold is fundamental to enhance the cytotoxicity, especially in the SKBR3 (HER2+) by the E-methyl lead molecule 47, MCF7 (ER+) by 45 and 49, and A549 (NSCLC) cell lines by 49. These hybrid molecules also showed a significant accumulation of SKBR3 cells at S-phase of the cell cycle after 72 hrs, which demonstrates besides of being cytotoxic in vitro against SKBR3 cells, 47 disturbs the replication and development of this type of cancer causing a dose-dependent cell cycle arrest at S-phase. Our results suggest that DNA damage might be involved in the induction of SKBR3 cell death caused by the hybrid molecules, and therefore, this novel system may be an effective suppressor of HER2+/Neu-driven cancer growth and progression. The present study points to potential structural optimisation of the series and encourages further focussed investigation of analogues of this scaffold series toward their applications in cancer chemoprevention or chemotherapy.

DOI

https://doi.org/10.1016/j.ejps.2023.106529

Funder

This work was supported by Trinity College Dublin Postgraduate Scholarships.

Creative Commons License

Creative Commons Attribution-Share Alike 4.0 International License
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.


Included in

Chemistry Commons

Share

COinS