Document Type
Article
Disciplines
3. MEDICAL AND HEALTH SCIENCES, Oncology
Abstract
Three-dimensional (3D) cell culture models can help bridge the gap between in vitro cell cultures and in vivo responses by more accurately simulating the natural in vivo environment, shape, tissue stiffness, stressors, gradients and cellular response while avoiding the costs and ethical concerns associated with animal models. The inclusion of the third dimension in 3D cell culture influences the spatial organization of cell surface receptors that interact with other cells and imposes physical restrictions on cells in compared to Two-dimensional (2D) cell cultures. Spheroids’ distinctive cyto-architecture mimics in vivo cellular structure, gene expression, metabolism, proliferation, oxygenation, nutrition absorption, waste excretion, and drug uptake while preserving cell–extracellular matrix (ECM) connections and communication, hence influencing molecular processes and cellular phenotypes. This protocol describes the in vitro generation of tumourspheroids using the low attachment plate, hanging drop plate, and cellusponge natural scaffold based methods. The expected results from these protocols confirmed the ability of all these methods to create uniform tumourspheres.
DOI
https://doi.org/10.1371/journal.pone.0276248
Recommended Citation
Wanigasekara, Janith; Carroll, Lara; Cullen, Patrick J.; Tiwari, Brijesh K.; and Curtin, James, "Three-Dimensional (3D) In Vitro Cell Culture Protocols to Enhance Glioblastoma Research" (2023). Articles. 177.
https://arrow.tudublin.ie/creaart/177
Creative Commons License
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.
Publication Details
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907841/
https://doi.org/10.1371/journal.pone.0276248