Document Type
Article
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
1.3 PHYSICAL SCIENCES, Condensed matter physics, Optics, Polymer science
Abstract
The optical properties of photopolymer layers consisting of an acrylamide–based matrix and microporous aluminophosphate nanocrystals of AEI- type are investigated. The compatibility of the photopolymer doped with the nanoparticles is studied. The surface and volume properties of the layers with different levels of doping with microporous nanocrystals are characterized. The effective refractive indices and absorption coefficients of the doped photopolymer layers are determined and used to calculate the refractive index and porosity of pure AEI nanoparticles used as dopants. Volume transmission gratings were recorded in the doped photopolymer layers at different spatial frequencies. By spatial monitoring of the characteristic Raman peak of the AEI particles across the grating vector, the optimal concentrations of the nanocrystals for obtaining highest light induced redistribution of nanocrystals are determined. The optical properties of the photopolymer layers combined with the redistribution of the AEI nanoparticles during holographic recording are the parameters exploited for fabrication of optical sensors. An irreversible humidity sensor based on a transmission holographic grating is designed and fabricated. The diffraction efficiency of the sensor changes permanently after exposure to high humidity.
DOI
https://doi.org/10.1021/jp1060073
Recommended Citation
Leite, E. et al. (2010) Optical Properties of Photopolymer Layers Doped with Aluminophosphate Nanocrystals. Journal of Physical Chemistry C. doi:10.1021/jp1060073
Publication Details
Journal of Physical Chemistry C (2010), DOI: 10.1021/jp1060073