Document Type

Article

Rights

Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence

Disciplines

Polymer science, Materials engineering, Composites

Publication Details

Materials Chemistry and Physics 146 (2014) 487-492

Abstract

Prediction of fatigue life is of great significance in ensuring that dynamically loaded rubber components exhibit safety and reliability in service. In this text, the dynamic equi-biaxial fatigue behaviour of magnetorheological elastomer (MREs) using a bubble inflation method is described. Wöhler (S-N) curves for both isotropic and anisotropic MREs were produced by subjecting the compounds to cycling over a range of stress amplitudes (σa) between 0.75 MPa and 1.4 MPa. Changes in physical properties, including variation in stress-strain relations and complex modulus (E*) during the fatigue process were analysed. It was found that the complex modulus of MRE samples decreased throughout the entire fatigue test and failure took place at a limiting value of approximately 1.228 MPa ± 4.38% for isotropic MREs and 1.295 ± 10.33% for anisotropic MREs. It was also determined that a dynamic stored energy criterion can be used as a plausible predictor in determining the fatigue life of MREs.

DOI

10.1016/j.matchemphys.2014.03.059

Funder

Irish Research Council


Share

COinS