Document Type

Article

Rights

Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence

Disciplines

Polymer science, Electrochemistry, Microbiology, Coating and films

Publication Details

Materials Science & Engineering C, 2013

Abstract

1,2,4,5-Tetrazine and its 3,6-disubstituted derivatives are currently used for a range of industrial and medical applications as they exhibit particular coordination chemistries, characterized by electron and charge transfer phenomena. The aim of the present work is to describe the synthesis of two tetrazine derivatives, namely 3,6-dihydrazino-1,2,4,5-tetrazine (DHDTZ) and 1,2,4,5-tetrazine dicarboxylic acid (DCTZ), and determine their antibacterial, antioxidant and anticorrosion characteristics as additives in a sol-gel coating on SS316L steel. The structure of the tetrazines was confirmed by NMR and FTIR while the surface morphology of bacterial cells in their presence was observed by AFM. Their ability to inhibit corrosion on 316L stainless steel was electrochemically determined using a potentiodynamic scanning (PDS) technique. The corrosion inhibition results showed that the acidic DCTZ provided the best corrosion protection. The concentration-dependent antioxidant capacity of the tetrazines was confirmed by both DPPH radical scavenging activity and FRAP assays, showing higher activity for DHDTZ than DCTZ. Furthermore, a DHDTZ doped sol-gel solution was prepared and curing parameter (temperature and time) was optimised for coating on microtitre wells and stainless steel panel. The antibacterial activity of the coated surfaces against P. aeruginosa ATCC 27853 and the biofilm forming bacteria S. epidermidis CSF 41498 was determined. DHDTZ showed significantly higher antibacterial activities with MIC as low as 31 ppm compared to 250ppm for DCTZ.

DOI

https://doi.org/10.1016/j.msec.2012.12.094

Funder

Technological University Dublin


Share

COinS