Document Type

Article

Rights

Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence

Publication Details

The Journal of Derivatives

Abstract

The authors introduce to the literature an intelligent lattice search algorithm to efficiently locate the optimal exercise boundary for American options. Lattice models can be accelerated by incorporating intelligent lattice search, truncation, and dynamic memory. We reduce computational runtime from over 18 minutes down to less than 3 seconds to estimate a 15,000-step binomial tree where the results obtained are consistent with a widely acclaimed literature. Delta and implied volatility can also be accelerated relative to standard models. Lattice estimation, in general, is considered to be slow and not practical for valuing large books of options or for promptly rebalancing a riskneutral portfolio. Our technique transforms standard binomial trees and renders them to be at least on par with commonly used analytical formulae. More importantly, intelligent lattice search can be tweaked to reach varying levels of accuracy with different step size, while conventional analytical formulae are less flexible.

DOI

https://doi.org/10.3905/jod.2019.1.080

jod.27.1.092_JOD_Shang.docx (87 kB)
Appendix


Share

COinS