Document Type

Theses, Ph.D

Rights

Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence

Disciplines

2. ENGINEERING AND TECHNOLOGY, 2.1 CIVIL ENGINEERING, Construction engineering, 2.7 ENVIRONMENTAL ENGINEERING, Environmental and geological engineering

Publication Details

A thesis presented to the Technological University Dublin in fulfilment of the requirements for the degree of Doctor of Philosophy

Abstract

Tomaintain biodiversity and ecological functionof coastal dune areas, itis important that practical and effective environmentalmanagemental strategies are developed. Advances in geospatial technologies offer a potentially very useful source of data for studies in this environment. This research project aimto developgeospatialdata-basedenvironmentalmodellingforcoastaldunecomplexestocontributetoeffectiveconservationstrategieswithparticularreferencetotheBuckroneydunecomplexinCo.Wicklow,Ireland.Theprojectconducteda general comparison ofdifferent geospatial data collection methodsfor topographic modelling of the Buckroney dune complex. These data collection methodsincludedsmall-scale survey data from aerial photogrammetry, optical satellite imagery, radar and LiDAR data, and ground-based, large-scale survey data from Total Station(TS), Real Time Kinematic (RTK) Global Positioning System(GPS), terrestrial laser scanners (TLS) and Unmanned Aircraft Systems (UAS).The results identifiedthe advantages and disadvantages of the respective technologies and demonstrated thatspatial data from high-end methods based on LiDAR, TLS and UAS technologiesenabled high-resolution and high-accuracy 3D datasetto be gathered quickly and relatively easily for the Buckroney dune complex. Analysis of the 3D topographic modelling based on LiDAR, TLS and UAS technologieshighlighted the efficacy of UAS technology, in particular,for 3D topographicmodellingof the study site.Theproject then exploredthe application of a UAS-mounted multispectral sensor for 3D vegetation mappingof the site. The Sequoia multispectral sensorused in this researchhas green, red, red-edge and near-infrared(NIR)wavebands, and a normal RGB sensor. The outcomesincludedan orthomosiac model, a 3D surface model and multispectral imageryof the study site. Nineclassification strategies were usedto examine the efficacyof UAS-IVmounted multispectral data for vegetation mapping. These strategies involved different band combinations based on the three multispectral bands from the RGB sensor, the four multispectral bands from the multispectral sensor and sixwidely used vegetation indices. There were 235 sample areas (1 m × 1 m) used for anaccuracy assessment of the classification of thevegetation mapping. The results showed vegetation type classification accuracies ranging from 52% to 75%. The resultdemonstrated that the addition of UAS-mounted multispectral data improvedthe classification accuracy of coastal vegetation mapping of the Buckroney dune complex.

DOI

https://doi.org/10.21427/JBX7-J846


Share

COinS