Document Type
Article
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
2.10 NANO-TECHNOLOGY
Abstract
Advancement of biomedical applications of carbonaceous nanomaterials is hampered by their biopersistence and proinflammatory action in vivo. Here, we used myeloperoxidase knockout B6.129X1-MPO (MPO k/o) mice and showed that oxidation and clearance of single walled carbon nanotubes (SWCNT) from the lungs of these animals after pharyngeal aspiration was markedly less effective whereas the inflammatory response was more robust than in wild-type C57Bl/6 mice. Our results provide direct evidence for the participation of MPO – one of the key-orchestrators of inflammatory response – in the in vivo pulmonary oxidative biodegradation of SWCNT and suggest new ways to control the biopersistence of nanomaterials through genetic or pharmacological manipulations.
Recommended Citation
Shvedova A.A, et al. (2012) Impaired Clearance and Enhanced Pulmonary Inflammatory/Fibrotic Response to Carbon Nanotubes in Myeloperoxidase-Deficient Mice. PLoS ONE 7(3): e30923. doi:10.1371/journal.pone.0030923
Publication Details
Shvedova AA, Kapralov AA, Feng WH, Kisin ER, Murray AR, et al. (2012) Impaired Clearance and Enhanced Pulmonary Inflammatory/Fibrotic Response to Carbon Nanotubes in Myeloperoxidase-Deficient Mice. PLoS ONE 7(3): e30923. doi:10.1371/journal.pone.0030923